Contents

EN5101 Digital Control Systemsz-Transforms

Prof. Rohan Munasinghe Dept of Electronic and Telecommunication EngineeringUniversity of Moratuwa

• Forward z-transform

- Inverse z transform methods– Power series, Recursive, Partial Fraction expansion
- z-transform Applications
- Applications of z-transform
	- Pole-zero description of discrete-time systems

2

- Stability consideration
- Difference Equations

Discrete-time (sampled) Signal

- A discrete time system is essentially a mathematical algorithm that takes an input sequence, x(n), and produces an output sequence, y(n).
- Example of discrete time systems are digital controllers, digital spectrum analyzers, and digital filters.

3

Analysis of Sampled Data Systems

Laplace (Continuous) to z (Discrete)

The z-transform

• The z-transform of a sequence, x(n), which is valid for all n, is defined as power series

$$
X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

where X(z) = Z{x(n)} and z=**rej**ω is a complex variable

• In causal systems $x(n) = 0$ for $n < 0$, $x(n)$ may be nonzero value only in the interval 0< n< ∞, so one sided z-transform can be written as follow.

$$
X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}
$$

• Clearly, the z-transform is a power series with an infinite number of terms and so may not converge for all values of z.

Region of convergence (ROC) of Z- transform

- The region of convergence (ROC) of X(z) is the set of all values of z for which X(z) attains a finite value.
- The region where the z-transform converges is known as the *region of convergence* (ROC) and in this region, the values of $X(z)$ are finite.
- Thus, any time we cite a z-transform we should also indicate its ROC.

Poles & Zeros of X(z)

- Values of z for which $X(z)$ attains ∞ are referred to as poles of X(z).
- Values of z for which X(z) attains 0 are referred to as the zeroes of X(z).

For example

$$
X(z) = \frac{3z^2 - 13z - 10}{z^2 + 2z - 8}
$$

Find the poles and zeroes of $X(z)$.

Solution:

$$
X(z) = \frac{3z^2 - 13z - 10}{z^2 + 2z - 8} = \frac{(3z + 2)(z - 5)}{(z + 4)(z - 2)}
$$

- Poles
- $(z + 4) (z 2) = 0 \implies z + 4 = 0 \text{ and } z 2 = 0$ $z = -4$ and $z = 2$
- Zeroes

 $(3z + 2) (z - 5) = 0 \Rightarrow 3z + 2 = 0 \text{ and } z - 5 = 0$ $z = -2/3$ and $z = 5$

Example

 Determine the z-transform of the following finite-duration signals.

(a)
$$
x_1(n) = [1,2,5,7,0,1]
$$

\n \uparrow
\n(b) $x_2(n) = [1,2,5,7,0,1]$
\n \uparrow
\n(c) $x_3(n) = [0,0,1,2,5,7,0,1]$
\n(d) $x_4(n) = [2,4,5,7,0,1]$
\n(e) $x_5(n) = \delta(n)$
\n(f) $x_6(n) = \delta(n - k)$, $k > 0$
\n(g) $x_7(n) = \delta(n + k)$, $k > 0$

Solution

9

 $x_1(n) = [1,2,5,7,0,1]$ $x_1(n)$ is finite length sequence. It is causal case and having $n = 0$ to 5. Therefore, $x_1(0)=1$, $x_1(1)=2$, $x_1(2)=5$, $x_1(3)=7$, $x_1(4)=0$, $x_1(5)=1$ $1+2z^{-1}+5z^{-2}+7z^{-3}+z^{-5}$ $1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + 0z^{-4} + 1z^{-5}$ $\frac{1}{2}(0)z^{-0} + x_1(1)z^{-1} + x_1(2)z^{-2} + x_1(3)z^{-3} + x_1(4)z^{-4} + x_1(5)z^{-5}$ 5 $u_1(z) = \sum_{n=0} x_1(n)$ $(0)z^{-0} + x_1(1)z^{-1} + x_1(2)z^{-2} + x_1(3)z^{-3} + x_1(4)z^{-4} + x_1(5)$ $X_1(z) = \sum_{n=0} x_1(n) z^{-n}$
= $x_1(0) z^{-0} + x_1(1) z^{-1} + x_1(2) z^{-2} + x_1(3) z^{-3} + x_1(4) z^{-4} + x_1(5) z^{-2}$
= $1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + 0z^{-4} + 1z^{-5}$
= $1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + z^{-5}$

The ROC is entire z-plane except at $z = 0$.

 $X_2(n) = [1,2, 5,7,0,1]$ $X₂(n)$ is finite length sequence and double sided (noncausal case) having n=-2 to 3. Therefore, $x_2(-2)=1$, $x_2(-1)=2$, $x_2(0)=5$, $x_2(1)=7$, $x_2(2)=0$, $x_2(3)=1$

 $z^2+2z+5+7z^3+z^{-3}$ $1z^2 + 2z^1 + 5z^0 + 7z^{-1} + 0z^{-2} + 1z^{-3}$ $t_2(3)z^{-3}$ $\frac{1}{2}(2)z^{-2}$ $t_2(1)z^{-1}$ $(x_2(-2)z^{-(2)} + x_2(-1)z^{-(1)} + x_2(0)z^{-0})$ $\sum_2(z) = \sum_2^3 x_2(n)$ 2 $(-2)z^{-(-2)} + x_2(-1)z^{(-1)} + x_2(0)z^{-0} + x_2(1)z^{-1} + x_2(2)z^{-2} + x_2(3)$ $X_2(z) = \sum_{n=2} x_2(n)z^{-n}$
= $x_2(-2)z^{-(2)} + x_2(-1)z^{-(1)} + x_2(0)z^{-0} + x_2(1)z^{-1} + x_2(2)z^{-2} + x_2(3)z^{-1}$
= $1z^2 + 2z^1 + 5z^0 + 7z^{-1} + 0z^{-2} + 1z^{-3}$
= $z^2 + 2z + 5 + 7z^{-1} + z^{-3}$

The ROC is entire z-plane except at $z = 0$ and $z = \infty$.

(e)
$$
x_5(n) = \delta(n)
$$

By definition,

$$
\delta(n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{else} \end{cases}
$$

By using general formula,

$$
X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

=
$$
\sum_{n=-\infty}^{\infty} \delta(n) z^{-n} = \delta(0) z^{-0}
$$

=
$$
1 \times 1 = 1
$$

z Transform of a sampled unit stepExample
 $\begin{bmatrix}\n\frac{1}{2} & \frac{1}{2} & \frac{1$ **SERESTS**

$$
x(n) = (1/2)^n u(n).
$$

$$
u(n) = \begin{cases} 1 & \text{for} & n > 0 \\ 0 & \text{for} & n < 0 \end{cases}
$$

13

$$
X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n
$$

• This is an infinite geometric series, we recall that

$$
1 + a + a2 + a3 + \dots + \frac{1}{1 - a}
$$
 if $|a| < 1$

where 'a' is the common ratio of the series. Consequently,

$$
X(z) = \frac{1}{1 - (1/2)z^{-1}} \quad \text{if} \quad |(1/2)z^{-1}| < 1
$$

ROC : $|z| > 1/2$

$$
X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-7}^{6} x(n)z^{-n} = \sum_{n=-6}^{0} x(n)z^{-n}
$$

\n
$$
X_1(z) = (-6)z^{-(-6)} + x(-5)z^{(-5)} + x(-4)z^{-(-4)} + x(-3)z^{(-3)}
$$

\n
$$
\dots \dots \dots \dots \dots + x(-2)z^{-(-2)} + x(-1)z^{-(-1)} + x(0)z^0
$$

\n
$$
X_1(z) = 0z^{-(-6)} + 1z^{-(-5)} + 3z^{-(-4)} + 5z^{-(-3)} + 3z^{-(-2)} + 1z^{-(-1)} + 0z^0
$$

\n
$$
X_1(z) = z^5 + 3z^4 + 5z^3 + 3z^2 + z^1
$$

• It is readily verified that the value of X(z) becomes infinite when $z = \infty$. Thus the ROC is everywhere in the z- plane except at $z = \infty$.

Example

Find the z-transform and the region of convergence for each of the discretetime sequence

(b) Again, the sequence in figure 1(b) is not causal. It is of a finite duration, and double sided.

$$
X_2(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} = \sum_{n=-4}^{5} x(n)z^{-n} = \sum_{n=-3}^{3} x(n)z^{-n}
$$

\n
$$
X_2(z) = x(-3).z^{-(3)} + x(-2).z^{-(2)} + x(-1).z^{-(1)} + x(0).z^{-(0)}
$$

\n
$$
\dots \dots \dots \dots + x(1)z^{-1} + x(2).z^{-2} + x(3)Z^{-3}
$$

\n
$$
X_2(z) = 0.z^3 + 1.z^2 + 3.z^1 + 5z^0 + 3.z^{-1} + 1.z^{-2} + 0.z^{-3}
$$

\n
$$
X_2(z) = z^2 + 3z + 5 + 3z^{-1} + z^{-2}
$$

It is evident that the value of $X(z)$ is infinite if $z = 0$ or if $z = \infty$. So ROC is everywhere except $z = 0$ and $z = \infty$.

19

17

(d) It is a causal sequence of infinite duration. The z-transform of the sequence is given by:

$$
X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

\n
$$
X_4(z) = \sum_{n=0}^{\infty} z^{-n} = \sum_{n=0}^{\infty} (z^{-1})^n
$$

\n
$$
X_4(z) = 1 + z^{-1} + z^{-2} + \dots
$$

- This is a geometric series with a common ratio of Z^{-1} .
- Generally, geometric series with a common ratio of 'a' can be expressed as ∞1

$$
\sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \qquad |a| < 1.
$$

• Which is a closed form of power series with common ratio 'a' and the series converges if

- Thus, power series of $X_4(z)$ converges if $|z^{-1}|$ < 1 and *equivalently if* $|z|$ > 1.
- Thus, we may express X (z) in closed form provided that region of $\textsf{convergence (ROC)} \quad |z| \!>\! 1 \colon$

$$
X(z) = 1 + z^{-1} + z^{-2} + \dots
$$

$$
X(z) = \frac{1}{(1 - z^{-1})} = \frac{z}{z - 1}
$$

• In this case, the z-transform is valid everywhere outside a circle of unit radius (ie $|z| = 1$) whose centre is at the origin. The exterior of the circle is the region of convergence.

22

The Unit Circle in the Complex z- Plane

z-Transform of a sampled exponential

The inverse z transform

- The inverse z-transform (IZT) allows us to recover the discrete time sequence, $x(n)$, given its z-transform $X(z)$.
- The inverse z-transform (IZT) is particularly useful in DSP work for example in finding the impulse response of digital filters.

$$
x(n) = Z^{-1} [X(z)]
$$

• If the z-transform appears as a power series of z as follows

$$
X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}
$$

\n
$$
X_3(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} + x(4)z^{-4} + \dots
$$

Then the discrete time sequence $x(0)$, $x(1)$ Can be directly obtained by inspection.

• In practice, X (z) is often expressed as a ratio of two polynomials in z^{-1} or equivalently in z.

 $X(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-N}}$

- In this form, the inverse z-transform, x (n), may be obtained using one of several methods including the following three:
	- (a) Power series expansion method
	- (b) Recursive method
	- (c) Partial fraction expansion method

Power Series Method

• Given the z-transform X(z) of a causal sequence, it can be expanded into an infinite series in z^{-1} or z by long division (sometimes called synthetic division):

$$
X(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-M}}
$$

$$
X(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} + \dots
$$

• In this method, the numerator and denominator of X(z) are first expressed in either descending powers of z or ascending powers of z^{-1} and the quotient is then obtained by long division.

Example

• Given the following z-transform of a causal LTI system, obtain its IZT (Inverse Z- Transform) by expanding it into a power series using long division:

$$
X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - z^{-1} + 0.3561z^{-2}}
$$

First, we expand X(z) into a power series with the numerator and denominator polynomials in ascending powers of z -1 and then perform the usual long division.

$$
\frac{1+3z^{-1}+3.6439z^{-2}+2.5756z^{-3}+\ldots}{1+2z^{-1}+z^{-2}}
$$
\n
$$
\frac{1-z^{-1}+0.3561z^{-2}}{3z^{-1}+0.6439z^{-2}}
$$
\n
$$
\frac{3z^{-1}-3z^{-2}+1.0683z^{-3}}{3.6439z^{-2}-1.0683z^{-3}}
$$
\n
$$
\frac{3.6439z^{-2}+3.6439z^{-3}}{2.5756z^{-3}-1.2975927z^{-4}}
$$

Alternatively, we may express Laplace Transform in +ve powers of z, in descending order and perform the long division.

Then, $x(n) = x(0) = 1$, $x(1) = 3$, $x(2) = 3.6439$, $x(4) = 2.5756$, ...

29

Recursive Method

$$
X(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-M}}
$$

 $x(0) = a_0/b_0$ $x(1) = [a_1 - x(0)b_1]/b_0$

$$
x(2) = [a2 - x(1)b1 - x(0)b2] / b0
$$

Generally.

$$
x(n) = \left[a_n - \sum_{i=1}^n x(n-i)b_i \right] / b_0, \dots n = 1, 2, 3 \dots
$$

Example

Find the first four terms of the inverse z-transform, x (n), using the recursive approach. Assume that the z-transform, $X(z)$, is the same as in example 4.5, that is:

$$
X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - z^{-1} + 0.3561z^{-2}}
$$

SOLUTION:

Comparing the coefficients of X(z) above with those ofthe general transform, we have,

 $a_0=1$, $a_1=2$, $a_2=1$, $b_0=1$, $b_1=-1$, $b_2=0.3561$, $N=M=2$

By using general equation, we have, $x(0) = a_0/b_0 = 1/1 = 1$ $x(1) = [a_1 - x(0) b_1]/b_0 = [2 - 1 \times (-1)]/1 = 3$ $x(2) = [a_{2} - x(1) b_{1} - x(0) b_{2}] / b_{0} = [1 - 3 \times (-1) - 1 \times 0.3561] / 1$ $= 3.6439$ $x(3) = [a_{3} - x(2) b_{1} - x(1)b_{2} + x(0)b_{3}]$ / b₀ $= 0 - x(2) b_1 - x(1)b_2$ $=$ $[0 - 3.646439 \times (-1) - 3 \times 0.3561]/1 = 2.5756$ $X(4) = [a_4 - x(3) b_1 - x(2) b_2 + x(1) b_3 + x(0) b_4]/b_0$ $=$ $[0 - 2.5756 \times (-1) - 3.6439 \times 0.356 + 3 \times 0 + 1 \times 0]/1$ $= 2.5756 - 1.2972 + 0 + 0 = 1.2784$ Thus the first four values of the inverse z-transform are:

 $x(0) = 1$, $x(1) = 3$, $x(2) = 3.6439$, $x(3) = 2.5756$

It is seen that both the recursive and direct, long divisionmethods lead to identical solutions.

Partial fraction expansion method

- In this method, the z-transform is first split into a sum of simple partial fractions. The inverse z-transform of each partial fraction is then obtained from z transform tables and then summed to give the overall inverse z-transform.
- In many practical cases, the z-transform is given as a ratio of polynomials in z or z-1.

33

If the poles of $X(z)$ are of first order, $X(z)$ can be expanded as:

$$
X(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-M}}
$$

\n
$$
X(z) = B + \frac{C_1}{1 - b_1 z^{-1}} + \frac{C_2}{1 - b_2 z^{-1}} + \dots + \frac{C_M}{1 - b_M z^{-1}}
$$

\n
$$
X(z) = B + \frac{C_1 z}{z - b_1} + \frac{C_2 z}{z - b_2} + \dots + \frac{C_M z}{z - b_M}
$$

\n
$$
X(z) = B + \sum_{i=1}^{M} \frac{c_i z}{z - b_i}
$$

where p_k are the poles of $X(z)$ (assumed distinct), C_k are the partial fraction coefficients and

 $B = a_N/b_N$

- Case 3: If X(z) contains one or more multiple-order poles (that is poles that are coincident) then extra terms are required in the partial fraction equation.
- For example, if $X(z)$ contains an m^{th} -order pole at $z = p_k$ the partial fraction expansion must include terms of the form

$$
\sum_{i=1}^m \frac{D_i}{(z-p_k)^i}
$$

The coefficients, D_i , may be obtained from the relationship

$$
D_i = \frac{1}{(m-i)!} \frac{d^{m-i}}{dz^{m-i}} [(z - p_k)^m X(z)]_{z=p_k}
$$

- Case 1: If $N \leq M$ ie the order of the numerator is less than that of the denominator in $X(z)$ expression, then B_0 will be zero.
- Case 2: If N>M, then X(z) must be reduced first to make $N \leq M$ by long division.
- The coefficient, C_k , associated with the pole p_k may be obtained by multiplying both sides of the equation by (z p_k) /z and then letting $z = p_k$.

$$
C_{\ell} = \frac{X(z)}{z} (z - p_k) | z = P_k
$$

38

Example

Find the inverse z-transform of the following transfer function H(z).

$$
H(z) = \frac{(1 - z^{-1})}{(1 - z^{-1} - 6z^{-2})}
$$

Solution:

Since N < M, case 1.

First, H(z) is converted for positive power of z.

$$
H(z) = \frac{1 - z^{-1}}{1 - z^{-1} - 6z^{-2}}
$$

=
$$
\frac{1 - z^{-1}}{(1 - 3z^{-1})(1 + 2z^{-1})}
$$

$$
H(z) = \frac{A}{(1 - 3z^{-1})} + \frac{B}{(1 + 2z^{-1})}
$$

39

To find A

$$
A = H(z)(1-3z^{-1})\Big|_{z^{-1}=1/3}
$$

\n
$$
A = \frac{1-z^{-1}}{(1-3z^{-1})(1+2z^{-1})}\left(1-3z^{-1}\right)\Big|_{z^{-1}=1/3} = \frac{1-z^{-1}}{(1+2z^{-1})}\Big|_{z^{-1}=1/3}
$$

\n
$$
A = \frac{1-1/3}{(1+2\times1/3)} = \frac{2/3}{5/3} = \frac{2}{5}
$$

To find B

$$
B = H(z)(1+2z^{-1})\Big|_{z^{-1}=-1/2}
$$

\n
$$
B = \frac{1-z^{-1}}{(1-3z^{-1})(1+2z^{-1})}\left(1+2z^{-1}\right)\Big|_{z^{-1}=-1/2} = \frac{1-z^{-1}}{(1-3z^{-1})}\Big|_{z^{-1}=-1/2}
$$

\n
$$
B = \frac{1-(-1/2)}{1-3\times(-1/2)} = \frac{1+1/2}{1+3/2} = \frac{3/2}{5/2} = 3/5
$$

$$
H(z) = \frac{2/5}{(1-3z^{-1})} + \frac{3/5}{(1+2z^{-1})}
$$

By comparing to the z transform

$$
x(n) = \alpha^{n} u(n)
$$

$$
X(z) = \frac{1}{1 - \alpha z^{-1}}
$$

The unit sample response of given system is:

h(n) = (2/5) 3ⁿu(n) + 3/5 (-2)ⁿu(n) $= [(2/5) 3ⁿ + 3/5 (-2)ⁿ] u(n)$

42

Example

Find the inverse z-transform of the following $X(z)$:

$$
X(z) = \frac{z^{-1}}{1 - 0.25z^{-1} - 0.375z^{-2}}
$$

Solution:we get, $N = 1$, $M = 2$, Thus, N<M \rightarrow Case 1: B₀ =0 • To change positive power of z by multiplying all terms with z² we get,

$$
X(z) = \frac{z}{z^2 - 0.25z - 0.375}
$$

$$
X(z) = \frac{z}{(z - 0.75)(z + 0.5)}
$$

 $X(z)$ contains first-order poles at $z= 0.75$ and at $z=-0.5$. Since N< M, the partial fraction expansion has the form,

$$
\frac{X(z)}{z} = \frac{1}{(z - 0.75)(z + 0.5)} = \frac{C_1}{(z - 0.75)} + \frac{C_2}{(z + 0.5)}
$$

To find C_1

$$
C_1 = \frac{(z - 0.75)X(z)}{z} \bigg|_{z = 0.75} = \frac{(z - 0.75)1}{(z - 0.75)(z + 0.5)} \bigg|_{z = 0.75}
$$

$$
C_1 = \frac{1}{(z + 0.5)} \bigg|_{z = 0.75} = \frac{1}{(0.75 + 0.5)} = 4/5
$$

To find C_2

$$
C_2 = \frac{(z+0.5)X(z)}{z}\Big|_{z=-0.5} = \frac{(z+0.5)1}{(z-0.75)(z+0.5)}\Big|_{z=-0.5}
$$

$$
C_2 = \frac{1}{(z-0.75)}\Big|_{z=-0.5} = \frac{1}{(-0.5-0.75)} = -4/5
$$

Example

2Find the discrete-time sequence x(n) with the following ztransform

$$
X(z) = \frac{z^2}{(z - 0.5)(z - 1)^2}
$$

Solution:

 $X(z)$ has a first-order pole at $z = 0.5$ and a second order pole at z =1. \rightarrow (Case 3)

Then

$$
\frac{X(z)}{z} = \frac{C_1}{(z - 0.75)} + \frac{C_2}{(z + 0.5)} = \frac{4/5}{(z - 0.75)} - \frac{4/5}{(z + 0.5)}
$$

$$
X(z) = \frac{4/5.z}{(z - 0.75)} - \frac{4/5.z}{(z + 0.5)}
$$

From the z-transform table k an⇔ k z /(z-a), therefore n^{n} and Z^{-1} $\frac{Z^{-1}}{Z^{-1}}$ $\frac{Z^{n}}{Z^{-1}}$ $\frac{Z^{n}}{Z^{-1}}$ $\frac{Z^{n}}{Z^{-1}}$ *z* $\left| \frac{4/5.2}{z - 0.75} \right|$ = 4/5(0.75)ⁿ and Z^{-1} $\left| \frac{-4/5.2}{(z + 0.5)^2} \right|$ $Z^{-1} \left[\frac{4/5. z}{(z - 0.75)} \right] = 4/5(0.75)^n$ and $Z^{-1} \left[\frac{-4/5. z}{(z + 0.5)} \right] = -4/5(-0.5)$

46

The desired inverse z-transform $x(n)$ is then

 $x(n) = 4/5 [(0.75)^n - (-0.5)^n]$, n>0

The partial fraction expansion has the form,

$$
\frac{X(z)}{z} = \frac{z}{(z - 0.5)(z - 1)^2} = \frac{C}{(z - 0.5)} + \frac{D_1}{(z - 1)} + \frac{D_2}{(z - 1)^2}
$$

$$
C = \frac{(z - 0.5)z}{(z - 0.5)(z - 1)^2} \bigg|_{z = 0.5} = \frac{z}{(z - 1)^2} \bigg|_{z = 0.5} = \frac{0.5}{(0.5 - 1)^2} = 2
$$

To obtain D_1 ,

$$
D_1 = \frac{d}{dz} \left[\frac{(z-1)^2 X(z)}{z} \right]_{z=1} = \frac{d}{dz} \left[\frac{(z-1)^2 z}{(z-0.5)(z-1)^2} \right]_{z=1} = \frac{d}{dz} \left[\frac{z}{z-0.5} \right]_{z=1}
$$

\n
$$
D_1 = \frac{d}{dz} \left[\frac{z \rightarrow u}{z-0.5 \rightarrow v} \right]_{z=1} = \frac{v du - u dv}{v^2}
$$

\n
$$
D_1 = \frac{(z-0.5).1-z.1}{(z-0.5)^2} = \frac{z-0.5-z}{(z-0.5)^2} = \frac{-0.5}{(z-0.5)^2} = \frac{-0.5}{(z-0.5)^2}
$$

To obtain D_2 ,

$$
D_2 = \frac{(z-1)^2 X(z)}{z} \bigg|_{z=1} = \frac{z}{z-0.5} \bigg|_{z=1} = \frac{1}{1-0.5} = 2
$$

Combining the results, X(z) becomes,

$$
X(z) = \frac{2z}{(z-0.5)} - \frac{2z}{(z-1)} + \frac{2z}{(z-1)^2}
$$

The inverse z-transform of each term on the right hand side is obtained from table 1 and summed to give $x(n)$ as follows.

 $x(n) = 2(0.5)^n - 2 + 2n = 2[(n-1) + (0.5)^n]$, $n \ge 0$

Properties of the z-transform

(1)Linearity

If the sequences $x_1(n)$ and $x_2(n)$ have a z-transform $X_1(z)$ and $X₂(z)$, then the z-transform of their linear combination is:

 $ax_1(n) + bx_2(n) \Leftrightarrow ax_1(z) + bx_2(z)$

and the ROC will *include* the intersection of R_{x} and $\mathsf{R}_{\mathsf{y}},$ that is $\mathsf{R}_{\mathsf{x}} \cap \mathsf{R}_{\mathsf{y}_\cdot}$

Shifting Property

Shifting a sequence (delaying or advancing) multipliesthe z-transform by a power of z, that is to say, if $x(n)$ has a z-transform $X(z)$

$$
x(n-k) \Leftrightarrow z^{k}X(z)
$$

Shifting does not change the region of convergence. Therefore, the z-transform of $x(n)$ and $x(n - k)$ have the same region of convergence.

Eg. $x(n-2)$ ⇔ z⁻²X(z)

51

z Transform of a shifted sequence

Properties: Time Reversal

If $x(n)$ has a z-transform $X(z)$ with a region of convergence R_x that is the annulus α < $|z|$ < β , the z-transform of the time-reversal sequence x (-n) is

x (-n) ⇔ **X(z -1)**

and has a region of convergence 1/β $<$ $|z|$ $<$ 1/ α , which is denoted by $1/R_x$.

Multiplication by an Exponential

If a sequence $x(n)$ is multiplied by a complex exponential α^n ,

α**ⁿx(n)** ⇔ **X(**α**-1z)**

This corresponds to a scaling of the z-plane. If the region of convergence of $X(z)$ is $r < |z| < r_+$, which will be denoted by R_x , the ROC of X(α ⁻¹z) is $|\alpha|r|$ < $|z|$ < $|\alpha|r_+$, which is denoted by $|\alpha|R_x$. As a special case, note that if $x(n)$ is multiplied by a complex exponential, e^{jnω0},

ejnω**⁰x(n)** ⇔ **X(e-j**ω**⁰z)**

which corresponds to a rotation of the z-plane.

Properties: Convolution Theorem

Perhaps the most important z-transform property is the convolution theorem, which states that convolution in the time domain is mapped into multiplication in the frequency domain, that is,

 $y(n) = x(n) * h(n) \leftrightarrow Y(z) = X(z)H(z)$

The region of convergence of $Y(z)$ includes the interaction of R_x and R_y , R_w contains $R_x \cap R_y$ However, the region of convergence of $Y(z)$ may be larger, if there is a pole-zero cancellation in the product X(z)H(z).

55

Real Convolution Theorem

K $\overline{\mathcal{F}}$ $f(cT)$ $\frac{1}{n}$ Σ $(\circ \tau)$ $A F F T$ \overline{z} $k = 0$ **Generalized** for any n \circledR റ b K $\sqrt{ }$ Ã ĩh. $\sum_{k \neq k}$ K $\sum_{n=0}^{1}$ $f(x)$ $-\overline{2}$ $(k-m)T$ Introduce $m-0$ σ llen \rightarrow $k - n$ al m ÷ $-2d$ \overline{m} $\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}f_{n}(n)$ \mathbb{R} $f_s(m)$ 덜 $f(nT)$ \overline{z} \vec{z} $f_2(mT)$ \ge ϵ \circ \leq $\mathbf{2}$

Example

Consider the two sequences $x(n) = \alpha^n u(n)$ and h(n) = δ(n) - αδ(n – 1) If $y(n)$ is convolution of $x(n)$ and $h(n)$, find the sequence $y(n)$

Solution:

 The z-transform of x(n) is $-\alpha z^{-1}$ |z| > | α | and $X(z) = 1/(1 - \alpha z^{-1})$ the z-transform of h(n) is $- \alpha z^{-1}$ |z| > 0 $H(z) = 1 - \alpha z^{-1}$

- However, the z-transform of the convolution of x(n) with h(n) is Y(z) = X(z)H(z) = 1/(1 - αz ⁻¹)(1 - αz⁻¹) = 1
- which, due to a *pole-zero* cancellation, has a region of convergence, that is the entire z-plane. By taking Inverse z-transform, $y(n) = \delta(n)$ 59

Properties: Derivative

If $X(z)$ is the z-transform of $x(n)$, the z-transform of $nx(n)$ is

$$
nx(n) \leftrightarrow -z \frac{dX(z)}{dz}
$$

Repeated application of this property allows for the evaluation of the z-transform of $n^k x(n)$ for any integer k.

Table 2: Properties of z- transform

Initial Value Theorem

A property that may be used to find the initial value of a causal sequence from its z-transform is the initial value theorem.

If $x(n)$ is causal, ie $x(n)=0$ for $n<0$], then

$$
X(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + \dots
$$

and

$$
x(0)=\lim_{z\to\infty}X(z)
$$

62

Example

Let $x(n)$ be a left-sided sequence that is equal to zero for $n > 0$. If $X(z) = (3z^{-1} + 2z^{-2})/(3 - z^{-1} + z^{-2})$, find $x(0)$.

Solution:

 For a left-sided sequence that is zero for n>0, thez-transform is X(z) = x(0) + x(-1)z + x(-2)z² + ………. Therefore, it follows that

> $x(0) = \lim_{|z| \to 0} X(z)$ =

For the given z-transform, we see that

$$
x(0) = \lim_{z \to 0} X(z) = \lim_{z \to 0} \frac{3z^{-1} + 2z^{-2}}{3 - z^{-1} + z^{-2}} \times \frac{z^{2}}{z^{2}} = \lim_{z \to 0} \frac{3z + 2}{3z^{2} - z + 1} = 2
$$

Example

Generalize the initial value theorem to find the value ofa causal sequence $x(n)$ at $n = 1$, and find $x(1)$ when $X(z) = (2 + 6z^{-1})/(4 - 2z^{-2} + 13z^{-3}).$

Solution:

If $x(n)$ is causal, $X(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + ...$ Therefore, note that if we subtract x(0) from X(z), $X(z) - x(0) = x(1)z^{-1} + x(2)z^{-2} + ...$ By multiplying both sides of this equation by z, we have, $z[X(z) - x(0)] = x(1) + x(2)z^{-1} + ...$

If we let $z \rightarrow \infty$, we obtain the value for $x(1)$, therefore, $x(1) = \lim_{|z| \to \infty} \{z[X(z) - x(0)]\}$ lim

Example: For the z-transform
$$
X(z) = \frac{2 + 6z^{-1}}{4 - 2z^{-2} + 13z^{-3}}
$$

\n $x(0) = \lim_{z \to \infty} X(z) = \lim_{z \to \infty} \frac{2 + 6z^{-1}}{4 - 2z^{-2} + 13z^{-3}} = \frac{1}{2}$

Then, $X(z) - X(0) = X(z) - \frac{1}{2}$ is:

$$
X(z) - \frac{1}{2} = \frac{2 + 6z^{-1}}{4 - 2z^{-2} + 13z^{-3}} - \frac{1}{2}
$$

\n
$$
= \frac{4 + 12z^{-1} - 4 + 2z^{-2} - 13z^{-3}}{2(4 - 2z^{-2} + 13z^{-3})} = \frac{12z^{-1} + 2z^{-2} - 13z^{-3}}{2(4 - 2z^{-2} + 13z^{-3})}
$$

\n
$$
= \frac{6z^{-1} + z^{-2} - 13/2z^{-3}}{(4 - 2z^{-2} + 13z^{-3})}
$$

\n
$$
= \frac{6z^{-1} + z^{-2} - 13/2z^{-3}}{(4 - 2z^{-2} + 13z^{-3})}
$$

\n
$$
x(1) = \lim_{z \to \infty} \frac{6 + z^{-1} + 13 / 2 z^{-2}}{4 - 2 z^{-2} + 13 z^{-3}} = \frac{3}{2}
$$

Then,

$$
z[X(z) - x(0)] = z \times \frac{6z^{-1} + z^{-2} + 13 / 2z^{-3}}{4 - 2z^{-2} + 13z^{-3}}
$$

$$
z[X(z) - x(0)] = \frac{6 + z^{-1} + 13 / 2z^{-2}}{4 - 2z^{-2} + 13z^{-3}}
$$

Consequently,

$$
x(1) = \lim_{z \to \infty} \{ z[X(z) - x(0)] \}
$$

$$
x(1) = \lim_{z \to \infty} \frac{6 + z^{-1} + 13 / 2 z^{-2}}{4 - 2 z^{-2} + 13 z^{-3}} = \frac{3}{2}
$$

The One-Sided z-Transform - shifting

• The one-sided, or unilateral, z-transform is defined by:

$$
X_1(z) = \sum_{n=0}^{\infty} x(n) z^{-n}
$$

• The primary use of the one-sided z-transform is to solve linear constant coefficient difference equations that haveinitial conditions.

- Most of the properties of the one-sided z-transform are the same as those for the two-sided z-transform. One that is different, however, is the shift property.
- Specifically, if x(n) has a one-sided z-transform X(z), the one-sided z-transform of $x(n - k)$ where $k > 0$ is:

$$
x(n-k) \Rightarrow z^{-k} \left[X_1(z) + \sum_{n=1}^k x(-n) z^n \right]
$$

• Then, one-sided z-transform of x(n – 1) and x(n-2) are:

$$
x(n-1) \Rightarrow z^{-1}X_1(z) + x(-1)
$$

$$
x(n-2) \Rightarrow z^{-2}X_1(z) + z^{-1}x(-1) + x(-2)
$$

Left shift

$$
\gamma(n+k) = \gamma \sum_{n=0}^{k} \left[\chi(2) - \frac{k-1}{2} \gamma(n) \frac{1}{2} \right]
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \left[\chi(2) - \frac{1}{2} \gamma(n) \frac{1}{2} \right]
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

\n
$$
\gamma(n+1) = \gamma \sum_{n=0}^{k} \chi(n) \frac{1}{2} \gamma(n)
$$

Therefore, taking the z-transform of both sides of the difference equation,

- y(n) = 0.25y(n 2) + x(n), we have
- $Y(z) = 0.25[y(-2) + y(-1)z^{-1} + z^{-2}Y(z)] + X(z)$

For $x(n) = \delta(n-1)$ • $X(z) = z^{-1} \times Z[\delta(n)] = z^{-1} \times 1 = z^{-1}$

Substituting for $y(-1)$ and $y(-2)$, and solving for $Y_1(z)$, we have

$$
Y(z) = 0.25[1 + z^{-1} + z^{-2}Y(z)] + z^{-1}
$$

\n
$$
Y(z) = \frac{1}{4} + \frac{1}{4}z^{-1} + \frac{1}{4}z^{-2}Y(z) + z^{-1}
$$

\n
$$
Y(z) - \frac{1}{4}z^{-2}Y_1(z) = \frac{1}{4} + \frac{5}{4}z^{-1}
$$

\n
$$
Y(z)[1 - \frac{1}{4}z^{-2}] = \frac{1}{4}[(1 + 5z^{-1})]
$$

\n
$$
Y(z) = \frac{1}{4}(1 + 5z^{-1})]/[1 - \frac{1}{4}z^{-2}]
$$

Solving Difference EquationsApplication of z Transforms in Discrete Systems

Example

Find the solution of the linear constant coefficient difference equation

 $y(n)=0.25$ y(n–2) + x(n) for x(n)=δ(n–1) with y(-1)=y(-2)=1.

Solution:

•

If the one-sided z-transform of $y(n)$ is $Y(z)$, the one-sided ztransform of $y(n-2)$ is

$$
\sum_{n=0}^{\infty} y(n-2)z^{-n} = z^{-2}Y(z) + y(-1)z^{-1} + y(-2)
$$

$$
Y_1(z) = \frac{1}{4} (1 + 5z^{-1}) / [1 - \frac{1}{4} z^{-2}]
$$

$$
Y(z) = \frac{\frac{1}{4}(1+5z^{-1})}{1-\frac{1}{4}z^{-2}} = \frac{\frac{1}{4}(1+5z^{-1})}{(1-\frac{1}{2}z^{-1})(1+\frac{1}{2}z^{-1})}
$$

$$
Y(z) = \frac{A}{(1-\frac{1}{2}z^{-1})} + \frac{B}{(1+\frac{1}{2}z^{-1})}
$$

71

72

$$
A = H(z)\left(1 - \frac{1}{2z^{-1}}\right)_{z^{-1} = 2}
$$
\n
$$
A = \frac{1}{4(1 - \frac{1}{2z^{-1}})(1 + \frac{1}{2z^{-1}})} \left(1 - \frac{1}{2z^{-1}}\right)_{z^{-1} = 2} = \frac{1}{4(1 + \frac{1}{2z^{-1}})} \left[\frac{1}{1 + \frac{1}{2z^{-1}}}\right]_{z^{-1} = 2}
$$
\n
$$
A = \frac{1}{4(1 + \frac{5 \times 2)}{1 + \frac{1}{2 \times 2}} = \frac{1}{2} \left[\frac{1}{8}\right]
$$
\n
$$
B = H(z)(1 + \frac{1}{2z^{-1}})\Big|_{z^{-1} = -2} = \frac{1}{4(1 - \frac{1}{2z^{-1}})} \Big|_{z^{-1} = -2} = \frac{1}{4(1 - \frac{1}{2z^{-1}})} = \frac{1}{4(1 + \frac{5(-2))}{1 - \frac{1}{2 \times (-2)}}}
$$
\n
$$
B = \frac{-9}{4} = -9/8
$$
\n
$$
B = \frac{-9}{4} = -9/8
$$
\n
$$
Y_1(z) = \frac{11}{8(1 - \frac{1}{2z^{-1}})} - \frac{9}{8(1 + \frac{1}{2z^{-1}})} = \frac{9/8}{1 + \frac{1}{2z^{-1}}}
$$
\n
$$
A = \frac{1}{8} = \frac{1}{1 + \frac{1}{2z^{-1}}}
$$
\n
$$
A = \frac{1}{8} = \frac{1}{1 + \frac{1}{2z^{-1}}}
$$
\n
$$
A = \frac{1}{8} = \frac{1}{8}
$$

Example

74

Assignment #3: Solve for y(k)

Car Loan Problem

<u>Assignment #4</u> : Determine U